Improving Observability of an Inertial System by Rotary Motions of an IMU
نویسندگان
چکیده
It has been identified that the inertial system is not a completely observable system in the absence of maneuvers. Although the velocity errors and the accelerometer bias in the vertical direction can be solely observable, other error states, including the attitude errors, the accelerometer biases in the east and north directions, and the gyro biases, are just jointly observable states with velocity measurements, which degrades the estimation accuracy of these error states. This paper proposes an innovative method to improve the system observability for a Micro-Electro-Mechanical-System (MEMS)-based Inertial Navigation System (INS) in the absence of maneuvers by rotary motions of the Inertial Measurement Unit (IMU). Three IMU rotation schemes, namely IMU continuous rotation about the X, Y and Z axes are employed. The observability is analyzed for the rotating system with a control-theoretic approach, and tests are also conducted based on a turntable to verify the improvements on the system observability by IMU rotations. Both theoretical analysis and the results indicate that the system observability is improved by proposed IMU rotations, the roll and pitch errors, the accelerometer biases in the east and north directions, the gyro biases become observable states in the absence of vehicle maneuvers. Although the azimuth error is still unobservable, the enhanced estimability of the gyro bias in the vertical direction can effectively mitigate the azimuth error accumulation.
منابع مشابه
Precision and Reliability Incensement of Inertial Navigation System with Rotation and Redundancy
Precision and reliability are two main performance characteristic in low-cost Inertial Navigation System(INS). Increase of precision in low-cost INS without auxiliary sensors is main challenge. Bias instability leads to position drift error in inertial navigation system. In addition, fault occurrence makes the sensor reliability is decreased. Rotation of Inertial Measurement Unit(RIMU) and use ...
متن کاملKalman-Filter-Based Orientation Determination Using Inertial/Magnetic Sensors: Observability Analysis and Performance Evaluation
In this paper we present a quaternion-based Extended Kalman Filter (EKF) for estimating the three-dimensional orientation of a rigid body. The EKF exploits the measurements from an Inertial Measurement Unit (IMU) that is integrated with a tri-axial magnetic sensor. Magnetic disturbances and gyro bias errors are modeled and compensated by including them in the filter state vector. We employ the ...
متن کاملA Novel System-Level Calibration Method for Gimballed Platform IMU Using Optimal Estimation
An accurate calibration of inertial measurement unit errors is increasingly important as the inertial navigation system requirements become more stringent. Developing calibration methods that use as less as possible of IMU signals has 6-DOF gimballed IMU in space-stabilized mode is presented. It is considered as held stationary in the test location incorporating 15 di...
متن کاملOn the Observability and Self-Calibration of Visual-Inertial Navigation Systems
We examine the observability properties of visual-inertial navigation systems, with an emphasis on self-calibration of the six degrees-of-freedom rigid body transform between a camera and an inertial measurement unit (IMU). Our analysis depends on a differential geometric formulation of the calibration problem, and on an algebraic test for the ‘observability rank condition’, originally defined ...
متن کاملMEMS IMU Error Mitigation Using Rotation Modulation Technique
Micro-electro-mechanical-systems (MEMS) inertial measurement unit (IMU) outputs are corrupted by significant sensor errors. The navigation errors of a MEMS-based inertial navigation system will therefore accumulate very quickly over time. This requires aiding from other sensors such as Global Navigation Satellite Systems (GNSS). However, it will still remain a significant challenge in the prese...
متن کامل